Performance Evaluation Metrics

Python 3

Classification Performance Metrics

Regression Performance Metrics

Theory

For Classification???

Confusion Matrix

Actual value
PositiveNegative
PredictedPositiveTrue PositiveFalse Positive
ValueNegativeFalse NegativeTrue Negative

Accuracy

Precision

Precision is used when the cost of a false positive is higher than the cost of a false negative.

Recall

Recall is used when the cost of a false negative is higher than the cost false positive.

F1-Score

The F1-Score is an optimal blend of precision and recall.

For Regression???

Correlation Coefficient (r)

R

Mean Absolute Error (MAE)

Root Mean Square Error (RMSE)

Willmott’s Index of Agreement (WI)

Nash-Sutcliffe coefficient (ENS)

Legates and Mc-Cabes Index (ELM)

Reference

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.html